Analytical methods
eli | Louvain-la-Neuve
Mineral analysis
Soil
The MOCA platform offers a set of physical and chemical analytical methods to characterize soil samples. These analyzes provide information about soil properties (physical quality, chemical quality, etc.) and functioning (chemical alteration process, mobilization of pollutants, etc.) to improve the soil management in different environmental contexts (agricultural soils, forest soils, urban soils, volcanic soils, polar soils, etc.).
If its study is important, the soil remains a complex matrix requiring various analytical protocols according its characteristics. This is why, it is necessary to define your objectives before starting: What do you want to know? What do you already know? What are your constraints?
Discover the soil analyses proposed by MOCA
Soil analyses proposed by MOCA
Physical and chemical analyses
Coarse particles
The coarse particles (i.e., gravels) are the mineral constituents with a dimension greater than 2 mm. They constitute the mineral reservoir in the soil and provide important roles, such as soil permeability, soil warming... The proportion of coarse particles is determined by gravimetry after passing through sieves of different mesh sizes.
Soil texture (clays / silts / sands)
Soil texture corresponds to the distribution of <2 mm-mineral particles: coarse sands (>200 µm), fine sands (between 50 and 200 µm), coarse silts (between 20 and 50 µm), fine silts (between 2 and 20 µm) and clays (<2 µm). Their determination is based on their sedimentation rate (according to Stockes law).
Depending on the soil type, different treatments can be considered: organic matter destruction by hydrogen peroxide, acid attack for calcareous soils (pH > 7.8), particle dispersion using Na hexametaphosphate, particle dispersion using cationic resin for Fe oxides-rich soils ...
Organic matter
In addition to the mineral components, the soil is composed by organic matter (OM, including living organisms, decaying plant/animal/microbial residues, and humus). The decomposition of fresh OM produces various soil organic particles more or less stabilized (humus) and ultimately will lead to assimilable mineral elements (CO2, NO3−, NH4+). Soil OM has a great influence on the soil cation exchange capacity and can be measured by loss on ignition at 500 °C. It can also be calculated on the basis of the organic carbon (Corg) content (conversion factor OM/Corg of 1.72 for agricultural horizons or 2.0 for forest horizons).
Soil pH and electrical conductivity
Soil pH characterizes the soil as acidic (pH < 6.5), neutral (6.5 < pH < 7.5) or alkaline (pH > 7.5). It is determined from a soil/solution suspension using either a water solution (pHH2O) or a 0.1 M KCl solution (pHKCl). Using the 0.1 M KCl solution allows the release of all H+ ions, including those retained on organic matter or clay minerals. The difference between pHKCl and pHH2O gives an idea of the potential acidity of the soil. The pHKCl is also more stable over time.
The electrical conductivity of an aqueous soil extraction gives an indication of the content of soluble electrolytes.
Residual moisture
Residual moisture is the difference between air-dried soil (max: 40 °C) and 105 °C-dried soil. Results are expressed relative to the 105 °C-dried soil.
C, N, and S elemental analysis and C/N ratio
The C, N, and S contents are determined by dry combustion (according to the Dumas method). By heating to a temperature of at least 900 °C (1150 °C for S) in a stream of oxygen, C is transformed into CO2, N into NOx, and S into SO2. The measurement is performed using a thermal conductivity detector (TCD).
The C/N ratio gives an estimate of the degree of degradation of organic matter and makes it possible to adapt the manure inputs in agricultural soils (ideal C/N ratio between 10 and 25).
Nitrogen is a special case. In soil, it can take many forms (organic nitrogen, urea nitrogen, nitrate, nitrite, and ammonium). None of the methods can detect all chemical forms. In addition to the Dumas method for determining organic N, nitrate, and nitrite, the Kjedhal method allows the quantification of organic N, urea, and ammonium forms. This method is modified according to ISO-11261 by adding the Devarda mixture and allowing the conversion of nitrates into ammonium.
Cation exchange capacity (base cations, exchange acidity, and base saturation)
Cation exchange capacity (CEC) represents all the negative charges allowing cations fixation available on clays, organic materials and, to a lesser extent, silts.
There are two categories of cations: (1) alkaline and alkaline-earth cations (Ca2+, Mg2+, K+, and Na+, formerly called "base" cations) and (2) acid cations (Al3+ and H+). The sum of these two categories represents the CEC and the ratio of base cations to the CEC indicates the base saturation of the soil.
There are two types of CEC: one determined at soil pH (effective CEC determined using BaCl2 or cobaltihexammine) and one determined at pH 7 (potential CEC determined using ammonium acetate according to the Metson method).
Selective extractions (sodium pyrophosphate, ammonium oxalate, sodium dithionite…)
Metal ions in soils and sediments are distributed among the different soil constituents, such as organic matter, oxyhydroxides (Fe, Al, and Mn), silicates, carbonates, and sulphides. These metal ions are retained by different processes (ion exchange, adsorption, etc.).
Selective extractions provide detailed information on the origin, biological and physico-chemical availability, mobilization, and transport of metals. This involves: (1) the use of chemicals with specific ionic strengths and (2) the element measurement in different fractions by ICP. Most methods distinguish between five fractions:
- the "exchangeable" fraction using BaCl2 or ammonium acetate,
- the "adsorbed and/or bound to carbonates" fraction using an acetate buffer at pH 5.5,
- the oxidizable fraction linked to "organic matter" using Na pyrophosphate,
- the reducible fractions linked to "Fe- or Mn-oxyhydroxides" using hydroxylamine or Tamm's reagent (ammonium oxalate),
- the fractions linked to the oxides crystallized using dithionite (Mehra and Jackson, 1960),
- the residual fraction.
ICP elemental analysis: total fractions, major elements, trace elements (metals, metalloids, rare earth elements), and specific elements
Mineral element measurement of soil requires a prior matrix dissolution: complete dissolution using alkaline fusions or HF/HClO4 acid attacks or partial dissolution using aqua regia attacks (following the new soil decree in Wallonia for trace metals).
Once in solution, measurement is performed by ICP-AES or ICP-MS to quantify:
- major elements: Al, Ca, Fe, K, Mg, Mn, Na, P, S
- trace elements: As, B, Cd, Co, Cr, Cu, Li, Mo, Ni, Pb, Se, Ti, V, Zn…
- rare earth elements: Ce, Dy, Eu, Er, Gd, Ho La, Lu, Nd, Pr, Sc, Sm, Tb, Tm, Y, Yb
- other specific elements (Si, assimilable P, etc.)
Organic pollutant analysis: PAHs, PCBs…
The MOCA platform has a set of liquid or gas chromatography instruments (HPLC-DAD-FLD-ELSD, UPLC-MS, GC-ECD-FID, and GC-MS) allowing determination and quantification of organic pollutants, such as PCBs, PAHs, organochlorine pesticides, etc.
Water
H2O, just a molecule? Are things obvious? Just by looking at its various names: drinking water, tap water, demineralized water, distilled water, mQ water, heavy water, waste water, etc., it's easy to see that this won't be the case.
Water is essential to life. It represents 60% of our body mass and 70% of the earth's surface. Simultaneously present in our environment in all three states of matter (solid, liquid and gaseous), it possesses numerous properties, including its anomalous density, high melting and boiling points, high heat capacity, amphoteric nature, etc. It is involved in a large number of environmental, biological and industrial processes.
Although it is one of the most abundant molecules on earth, it remains a unique element that is exciting to study.
Discover the water analyses proposed by MOCA
Water analysis proposed by MOCA (non exhaustive list)
pH et Alcalinité
La mesure de la valeur du pH de l’eau revêt une importance considérable pour de nombreux types d’échantillon. Les valeurs de pH élevées et basses sont directement ou indirectement toxiques pour les organismes aquatiques. La valeur du pH est le paramètre le plus utile pour l’évaluation des propriétés corrosives d’un environnement aquatique. Elle est également importante pour le bon fonctionnement des processus de traitement de l’eau et leur contrôle (par exemple floculation et désinfection au chlore), le contrôle de la solubilité du plomb des eaux potables et du traitement biologique des eaux usées et de leurs effluents.
Conductivité électrique
Conductivité électrique, γ : Inverse de la résistance, mesurée dans des conditions spécifiées entre les faces opposées d´un cube unité (de dimensions déterminées) d´une solution aqueuse.
- Pour l´examen de la qualité de l´eau, celle-ci est souvent appelée « conductivité électrique » et peut être utilisée comme mesure de la concentration des solutés ionisables présents dans l´échantillon (Définition tirée de l´ISO 6107/2).
- Détermination directe, à l´aide d´un instrument approprié, de la conductivité électrique de solutions aqueuses.
La conductivité électrique est une mesure du courant conduit par les ions présents dans l´eau (phénomène des conducteurs de deuxième espèce) et dépend a) de la concentration en ions; b) de la nature des ions ; c) de la température de la solution ; d) de la viscosité de la solution.
Mesure du carbone organique dissous (TOC-L) et de l’azote total
Les analyses de TOC-L (Total Organic Carbon - Liquide) sont cruciales pour évaluer la qualité de l'eau en mesurant le carbone organique total présent dans un échantillon. Utilisant des techniques d'oxydation à haute température (680°C), ces analyses convertissent le carbone organique en dioxyde de carbone (CO₂), qui est ensuite détecté par un détecteur infrarouge (NDIR). Elles sont largement utilisées dans le traitement de l'eau, l'évaluation environnementale et la production alimentaire pour surveiller la pureté de l'eau et détecter la pollution.
Les différentes formes de carbone dissout mesurées sont :
- Dissolved organic carbon (DOC)
- Nonpurgeable organic carbon (NPOC)
- Purgeable organic carbon (POC) or volatile organic carbon (VOC).
Un module complémentaire est disponible sur l’analyseur TOC-L pour mesurer la teneur en azote dissout.
Analyse des ions
- Analyse des cations majeurs par ICPAES : Calcium (Ca++), Magnésium (Mg++), sodium (Na+), potassium (K+)
- Analyses des anions majeurs par Chromatographie ionique (IC) : Fluorure (F-) Chlorure (Cl-), Sulfate (SO4--), Nitrite (NO2-), Nitrate (NO3-), Phosphate (PO4---)
- Analyse de l’ammonium (NH4+) par Chromatographie ionique
- Analyse des ions éléments traces par ICPMS : Plomb (Pb), Cadmium (Cd), Arsenic (As), Cuivre (Cu), Zinc (Zn), …
- Evaluation de la balance ionique
Mesure de DCO
La mesure de la Demande Chimique en Oxygène (DCO) est essentielle pour évaluer la quantité de matière organique présente dans l'eau, qui peut consommer de l'oxygène lorsqu'elle se décompose. Elle est utilisée pour surveiller la pollution des eaux usées et naturelles, garantir la conformité aux normes environnementales, et évaluer l'efficacité des processus de traitement de l'eau. Une DCO élevée indique une forte présence de polluants organiques, nécessitant des actions correctives pour protéger les écosystèmes aquatiques et la santé publique.
Deux méthodes sont proposées au sein de la plateforme MOCA (en partenariat avec GEBI) :
- Titrage en présence de bichromate de K et de sulfate de fer (II), selon la norme AFNOR NBN T91-201, pour des concentrations supérieures à 30ppm
- Kit colorimétrique de 500ppm à 1%
Other
On demand
Organic analysis
On demand