- P. Auclair, K. Leyde and D. Steer, A window for cosmic strings, arXiv: 2112.11093.
- A.L. Miller, S. Clesse, F. De Lillo et al., Probing planetary-mass primordial black holes with continuous gravitational waves, Phys.Dark Univ. 32 (2021) 100836. Preprint realised in 2020, review and publication in May 2021.
- KAGRA and Virgo and LIGO Scientific Collaborations, Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo’s first three observing runs, Phys.Rev.D 104 (2021) 2, 022005.
- A.L. Miller, N. Aggarwal, S. Clesse, F. De Lillo, Constraints on planetary and asteroid-mass primordial black holes from continuous gravitational-wave searches, arxiv: 2110.06188.
- S. Caudill, S. Kandhasamy, C. Lazzaro, A. Matas, M. Sieniawska, A.L. Stuver, Gravitational-wave searches in the era of Advanced LIGO and Virgo, Modern Physics Letters A, Volume 36, Issue 23, id. 2130022-458.
- KAGRA and Virgo and LIGO Scientific Collaborations, Tests of General Relativity with GWTC-3, arXiv:2112.06861, submitted to PRD.
- D.C.N. da Cunha and C. Ringeval, Interferences in the stochastic gravitational wave background, JCAP 08 (2021) 005, arXiv: 2104.14231 [astro-ph.CO].
- C. Joana, S. Clesse, Inhomogeneous pre-inflation accross Hubble scales in full general relativity, Phys. Rev. D 103, 083501 (2021), arXiv:2011.12190.
- T. Andrade, C. Joana, et al., GRChombo: An adaptable numerical relativity code for fundamental physics, Journal of Open Source Software, 6(68), 3703, arXiv: 2201.03458.
- K. Janssens, J. Suresh, et al., Gravitational-Wave Geodesy: Defining False Alarm Probabilities with Respect to Correlated Noise, arXiv: 2112.03560.
- KAGRA and Virgo and LIGO Scientific Collaborations, All-sky search for gravitational wave emission from scalar boson clouds around spinning black holes in LIGO O3 data, arXiv:2111.15507.
- KAGRA and Virgo and LIGO Scientific Collaborations, Constraints on the cosmic expansion history from GWTC-3, arXIv:2111.03604.
- J.V. van Heijningen, J. Winterflood and L. Ju, Multi-blade monolithic Euler springs with optimised stress distribution, arXiv:2104.03734.
- H. van der Graaf et al., The ultimate performance of the Rasnik 3-point alignment system, arXiv:2104.03601.
- J. Harms et al., Lunar Gravitational-wave Antenna, ApJ 910 1.
- J.V. van Heijningen, How I got into gravitational waves, LIGO India blog, April 2021, science dissemination.
- J.V. van Heijningen, Building a gravitational wave detector on the Moon, LIGO India blog, August 2021, science dissemination.
- J.V. van Heijningen, Where do gravitational waves come from, and how can we detect more?, book chapter in “Teaching Einsteinian Physics in Schools”, August 2021.
- F. Badaracco, J. Harms, C. De Rossi, I. Fiori , K. Miyo, T. Tanaka, T. Yokozawa, F. Paoletti and T. Washimi, KAGRA underground environment and lessons for the Einstein Telescope, Physical Review D, 104(4), p.042006, 2021, arXiv:2104.07527.
- E.C. Ferreira, F. Bocchese, F. Badaracco, J.V. van Heijningen, S. Lucas and A. Perali, Superconducting thin film spiral coils as low-noise cryogenic actuators, Conference Series (Vol. 2156, No. 1, p. 012080), December 2021, IOP Publishing.
- F. Badaracco and Virgo Collaboration, Environmental noises in current and future gravitational-wave detectors, Conference Series (Vol. 2156, No. 1, p. 012077), December 2021, IOP Publishing.
- A. Addazi et al., Quantum gravity phenomenology at the dawn of the multi-messenger era–A review, Progress in Particle and Nuclear Physics (2021), arXiv: 2111.05659 [hep-ph].
- I. La Rosa, P. Astone, S. D’Antonio, S. Frasca, P. Leaci, A.L. Miller, C. Palomba, O.J. Piccinni, L. Pierini, and T. Regimbau, Continuous Gravitational-Wave Data Analysis with General Purpose Computing on Graphic Processing Units, Universe 7.7 (2021).
- R. Abbott et al., Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo’s first three observing runs, Phys. Rev. D 104.2 (2021), p. 022005, arXiv: 2103.08520 [gr-qc].
- R. Abbott et al., Diving below the Spin-down Limit: Constraints on Gravitational Waves from the Energetic Young Pulsar PSR J0537-6910, The Astrophysical Journal Letters 913.2 (May 2021), p. L27. url: https://doi.org/10.3847/2041-8213/abffcd.
- A.L. Miller et al., Probing new light gauge bosons with gravitational-wave interferometers using an adapted semi-coherent method, Phys. Rev. D 103.10 (2021), p. 103002. arXiv: 2010.01925 [astro-ph.IM].
- Andrew L. Miller et al., Using gravitational-wave interferometers as particle detectors to directly probe the existence of dark matter, Letter of Intent for Snowmass 2021 (Aug. 2020).
- Ling Sun, Cristiano Palomba, and Andrew L. Miller. “Snowmass2021-Letter of Interest Search for gravitational waves from ultralight boson clouds around black holes”. In: Letter of Intent for Snowmass 2021 (Aug. 2020).
-
C. Joana, Gravitational dynamics in Higgs inflation: Preinflation and preheating with an auxiliary field, Phys. Rev. D 106 (2022) 023504, arXiv:2202.07604.
-
D. C. N. da Cunha, C. Ringeval and F. R. Bouchet, Stochastic gravitational waves from long cosmic strings, JCAP 09 (2022) 078, arXiv: 2205.04349 [astro-ph.CO]
-
P. Auclair and C. Ringeval, Slow-roll inflation at N3LO, Phys. Rev. D 106 (2022) 063512, arXiv: 2205.12608.
-
J. Martin, C. Ringeval and V. Vennin, Encyclopædia Inflationaris, Phys. Dark Univ. 5-6 (2014) 75–235, arXiv: 1303.3787v3.
-
J. Martin, C. Ringeval and V. Vennin, Encyclopædia Inflationaris: opiparous edition, arXiv: 1303.3787v4.
-
P. Auclair, C. Caprini, D. Cutting, M. Hindmarsh, K. Rummukainen, D. A. Steer and D. J. Weir, Generation of gravitational waves from freely decaying turbulence, JCAP 09 (2022), 029, arXiv:2205.02588 [astro-ph.CO]
-
P. Auclair et al., LISA Cosmology Working Group, Cosmology with the Laser Interferometer Space Antenna, arXiv:2204.05434 [astro-ph.CO] .
-
P. Auclair, Mean-filed approach to random apollonian packing, Phys. Rev. E (2023) 107, 034129, arXiv: 2211.07509 [math-ph].
-
F. De Lillo, J. Suresh, A. Depasse, M. Sieniawska, A. Miller and G. Bruno, Probing ensemble properties of vortex-avalanche pulsar glitches with a stochastic gravitational-wave background search, arXiv:2211.16857 (2022) [gr-qc].
-
LIGO Scientific, Virgo, and KAGRA Collaborations, R. Abbott et al., All-sky, all-frequency directional search for persistent gravitational waves from Advanced LIGO’s and Advanced Virgo’s first three observing runs, Phys. Rev. D 105 (2022) 12, 122001, arXiv: 2110.09834
-
D. Agarwal, J. Suresh, V. Mandic, A. Matas and T. Regimbau, Targeted search for the stochastic gravitational-wave background from the galactic millisecond pulsar population, Phys. Rev. D 106 (2022) 4, 043019, arXiv: 2204.08378 [gr-qc].
-
F. D. Lillo, J. Suresh and A. L. Miller, Stochastic gravitational-wave background searches and constraints on neutron-star ellipticity, Mon.Not.Roy.Astron.Soc. 513 (2022) 1, 1105-1114.
-
K. Janssens, T. A. Callister, N. Christensen, M. W. Coughlin, I. Michaloliakos, J. Suresh and N. van Remortel, Gravitational-Wave Geodesy: Defining False Alarm Probabilities with Respect to Correlated Noise, Phys. Rev. D 105 (2022) 8, 082001, arXiv:2112.03560
-
A. L. Miller, N. Aggarwal, S. Clesse and F. De Lillo, Constraints on planetary and asteroid-mass primordial black holes from continuous gravitational-wave searches, Phys.Rev.D 105 (2022) 6, 062008.
-
F. Badaracco,J. van Heijningen, E. Ferreira and A. Perali, A cryogenic and superconducting inertial sensor for the Lunar Gravitational–Wave Antenna, the Einstein Telescope and Selene-physics, Conference Proceeding of The Sixteenth Marcel Grossmann Meeting, pp. 3245-3253 (2023)
-
F. Amann, F. Badaracco, R. DeSalvo, A. Paoli, L. Paoli, P. Ruggi and S. Selleri, Tunnel configurations and seismic isolation optimization in underground gravitational wave detectors, Applied Sciences. 2022; 12(17):8827, arXiv:2204.04131
-
K. Janssens, G. Boileau, N. Christensen, F. Badaracco and N. van Remortel, Impact of correlated seismic and correlated Newtonian noise on the Einstein telescope, 2022, Phys. Rev. D 106, 042008, arXiv:2206.06809
-
J. van Heijningen, A. Gatti, E. Ferreira, F. Bocchese, F. Badaracco,S. Lucas, A. Perali and F. Tavernier, A cryogenic inertial sensor for terrestrial and lunar gravitational-wave detection, 2022, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associat ed Equipment, 167231.
-
A. Miller, F. Badaracco and C. Palomba, Distinguishing between dark-matter interactions with gravitational-wave detectors, Phys. Rev. D 105 (2022) 103035, arXiv: 2204.03814
-
L. Trozzo and F. Badaracco, Seismic and Newtonian Noise in the GW Detectors, 2022, Galaxies, 10(1), p.20.
-
T. Yamamoto, A. Miller, M. Sieniawska and T. Tanaka, Assessing the impact of non-Gaussian noise on convolutional neural networks that search for continuous gravitational waves, Phys. Rev. D (2022) 106, 2, 024025, arXiv:2206.00882
-
M. Sieniawska and D. I. Jones, Gravitational waves from spinning neutron stars as not-quite-standard sirens, MNRAS 509 (2022) 4, pp.5179-5187, arXiv: 2108.11710
-
E.C. Ferreira et al. (incl. J. van Heijningen), 2022, J. Phys.: Conf. Ser. 2156 012080
-
S. Di Pace, et al. (incl. J. van Heijningen), Research Facilities for Europe’s Next Generation Gravitational-Wave Detector Einstein Telescope, 2022, Galaxies 10, 65