Membres
irmp | Louvain-la-Neuve
Academic staff (5)
Christophe Charlier
My research focuses on problems in mathematical physics, random matrix theory and integrable partial differential equations.
My research focuses on problems in mathematical physics, random matrix theory and integrable partial differential equations.
Tom Claeys
random matrix theory, integrable systems
Matrices aléatoires; Déterminants de Hankel, Toeplitz et Fredholm; Systèmes intégrables; Polynômes orthogonaux
random matrix theory, integrable systems
Matrices aléatoires; Déterminants de Hankel, Toeplitz et Fredholm; Systèmes intégrables; Polynômes orthogonaux
Christian Hagendorf
Research interests: Exactly-solvable models in statistical mechanics, integrability and combinatorics.
Research interests: Exactly-solvable models in statistical mechanics, integrability and combinatorics.
Philippe Ruelle
Statistical field theory
Statistical field theory
Professors emeriti (2)
Luc Haine
I work in soliton theory and conformal field theory. My main results and research interests concern
- the Kovalevskaya-Painlevé property for integrable systems,
- equations defining abelian varieties and toric varieties,
- tau-functions and representations of the Virasoro and W-algebras.
I work in soliton theory and conformal field theory. My main results and research interests concern
- the Kovalevskaya-Painlevé property for integrable syste...
Postdocs (2)
Alexandre Lazarescu
I am a post-doctoral researcher in the field of non-equilibrium
statistical physics, specialised in large deviation theory and
interacting particle models. I completed my PhD in 2013 at the
Institut de Physique Théorique (CEA Saclay), where I worked on the
large deviations of the Asymmetric Simple Exclusion Process (ASEP). I
then worked as a postdoc at the Instituut voor Theoretische Fysica (KU
Leuven) and the University of Luxembourg, and at the Centre de
Physique Théorique in Ecole Polytechnique, before coming to the GPP
group at IRMP. My topics of interests include large deviations and
hydrodynamic limits of interacting particle systems far from
equilibrium, exactly solvable models and their combinatorial
structure, quantum integrability methods (as applied to exactly
solvable driven interacting particle systems, such as the ASEP), and
more general properties of rare events in non-equilibrium statistical
models.
I am a post-doctoral researcher in the field of non-equilibrium
statistical physics, specialised in large deviation theory and
interacting particle models. I...
Office: B.429
PhD students (7)
Ismaël Ahlouche
Nicolas Robert
My research is currently focused on spatial phase separation occurring in some statistical models. This phenomenon appears when boundary conditions induce macroscopic effects on the system, resulting in the formation of several regions with distinct behaviours. These regions are separated by interfaces generally referred to as "arctic curves".
My research is currently focused on spatial phase separation occurring in some statistical models. This phenomenon appears when boundary conditions induce macro...
Chloé Van Bastelaere
field theory approach to tiling problems
field theory approach to tiling problems
Office: B.327
Nathan Vanbeneden
Exact results in physical systems with finite or infinite number of particles.
Exact results in physical systems with finite or infinite number of particles.
Office: B.327
Maxime Willaert
PhD student, interested in quantization from a differential geometric viewpoint, with a focus on Kirillov's orbit method.
PhD student, interested in quantization from a differential geometric viewpoint, with a focus on Kirillov's orbit method.
Office: B.404
Email: maxime.willaert@uclouvain.be