Aller au contenu principal

Topologie algébrique

irmp | Louvain-la-Neuve

L’équipe de topologie algébrique possède une expertise et s’intéresse à la théorie de l'homotopie rationnelle, au manifold calculus de Goodwillie-Weiss, à la catégorification des invariants quantiques (homologies de Khovanov et de Khovanov-Rozansky), à la théorie de représentations d’ordre supérieur et à ses applications à la topologie en petite dimension.

Professeurs

  • Pascal LAMBRECHTS
  • Pedro VAZ

Professeur émérite

  • Yves FELIX

Post-doctorants

  • Geoffrey JANSSENS
  • Jules MARTEL
  • Jieru ZHU

Doctorants

  • Rodrigue HAYE ENRIQUEZ
  • Jean MUGNIERY
  • Ellia RIZZO
  • Léo SCHELSTRAETE

On calculus of functors and the little disk operad:

Lambrechts, Pascal; Volić, Ismar Formality of the little N-disks operad. Mem. Amer. Math. Soc. 230 (2014), no. 1079, viii+116 pp.

Lambrechts, Pascal; Turchin, Victor; Volić, Ismar The rational homology of spaces of long knots in codimension >2. Geom. Topol. 14 (2010), no. 4, 2151–2187.

Lambrechts, Pascal; Turchin, Victor Homotopy graph-complex for configuration and knot spaces. Trans. Amer. Math. Soc. 361 (2009), no. 1, 207–222.

Arone, Gregory; Lambrechts, Pascal; Volić, Ismar Calculus of functors, operad formality, and rational homology of embedding spaces. Acta Mathematica 199 (2007), no. 2, 153–198.

On rational homotopy theory:

Félix, Yves; Halperin, Steve; Thomas, Jean-Claude Rational homotopy theory. II. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. xxxvi+412 pp. ISBN: 978-981-4651-42-4

Felix, Yves; Halperin, Steve; Thomas, Jean-Claude Exponential growth and an asymptotic formula for the ranks of homotopy groups of a finite 1-connected complex. Annals of Mathematics (2) 170 (2009), no. 1, 443–464

Félix, Yves; Halperin, Stephen; Thomas, Jean-Claude Rational homotopy theory. Graduate Texts in Mathematics, 205. Springer-Verlag, New York, 2001. xxxiv+535 pp. ISBN: 0-387-95068-0

Hardt, Robert; Lambrechts, Pascal; Turchin, Victor; Volić, Ismar Real homotopy theory of semi-algebraic sets. Algebr. Geom. Topol. 11 (2011), no. 5, 2477–2545.

Lambrechts, Pascal; Stanley, Don Poincaré duality and commutative differential graded algebras. Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 4, 495–509.

On link homology/categorification:

M. Mackaay, Stošić, M. and P. Vaz, sl(N) -link homology  (N≥4)  using foams and the Kapustin-Li formula. Geom. Topol. 13 (2009), no. 2, 1075–1128.

M. Mackaay and P. Vaz, The universal  sl3 -link homology. Algebr. Geom. Topol. 7 (2007), 1135–1169.

D. Tubbenhauer, P. Vaz and P.  Wedrich,Super  q -Howe duality and web categories. Algebr. Geom. Topol. 17 (2017), no. 6, 3703–3749.

G. Naisse and P. Vaz, An approach to categorification of Verma modules. Proc. Lond. Math. Soc. (3) 117 (2018), no. 6, 1181–1241.

G. Naisse and P. Vaz, 2-Verma modules and the Khovanov-Rozansky link homologies. Math. Z. 299 (2021), no. 1-2, 139–162.